A FUNDAMENTAL INVESTIGATION OF THE SYNTHESIS AND CHARACTERIZATION OF UCL₃ AND (NH₄)₂UCL₆ FOR APPLICATIONS OF TRANSURANIC CHLORIDE SYNTHESIS AND CHARACTERIZATION

A. L. Hames, T. L. Cruse, J. L. Willit, M. A. Williamson, A. Paulenova

Overview

- Introduction
- Equipment
- Procedure
- (NH₄)₂UCl₆ Characterization
- UCl₃ Characterization
- Future Work
- Conclusions

Phase Equilibria in Systems Relevant to Pyroprocessing

- During electrorefining, contaminants less noble than uranium and transuranics anodically dissolve in electrolyte
 - Lanthanides, alkali and alkaline earth fission products
- There is a buildup of active metal and lanthanide fission products in the molten salt electrolyte
- The LiCl-KCl-TRUCl₃ system affects the thermodynamic activity of the chlorides, which affects the TRU-lanthanide separation factor
- NpCl₃ will be the first TRU chloride we investigate in the LiCl-KCl system
- NpCl₃ is not readily available and must be synthesized for use in the phase equilibria study

Need for Anhydrous Chloride Synthesis

- Numerous methods of synthesis for actinides tri- and tetrachloride
 - Dangerous bi-products

•
$$\operatorname{AnO}_{2(s)} + 2\operatorname{CCl}_{4(g)} + \operatorname{Cl}_{2(g)} \rightarrow \operatorname{AnCl}_{4(s)} + 2\operatorname{COCl}_{2(g)}$$

- Extremely high temperatures
 - Carbothermic reduction of AnO₂ to produce AnN
- Expensive reagents

•
$$AnN_{(s)} + 3Pt_{(s)} \rightarrow AnPt_{3(s)} + \frac{1}{2} N_{2(g)}$$

- Residual contaminants
 - $AnO_{2(s)} + \frac{3}{4} ZrCl_4(LiCl-KCl)_{(l)} + \frac{1}{4} Zr_{(s)} \rightarrow AnCl_3(LiCl-KCl)_{(l)} + ZrO_{2(s)}$
- Explosive hazards
 - $\operatorname{AnCl}_{4(s)} + \frac{1}{2} \operatorname{H}_{2(g)} \rightarrow \operatorname{AnCl}_{3(s)} + \operatorname{HCl}_{(g)}$

Synthetic Approach

- An or AnO₂ with NH₄Cl
 - Well-known way of producing anhydrous rare earth chlorides
 - Previously used for UCl₄ and PuCl₃ synthesis
- Favorable synthetic conditions
 - Low temperature
 - 350 450 °C
 - Inexpensive reagents
 - No contaminants left in product
 - Such as ZrO₂
 - No dangerous bi-products
 - HCl_(g) is evacuated from the chamber and scrubbed

Reaction with Actinide Oxides

1. $AnO_{2(s)} + 6 NH_4Cl_{(s)} \rightarrow (NH_4)_2AnCl_{6(s)} + 2H_2O_{(g)} + 4 NH_{3(g)}$

2.
$$(NH_4)_2AnCl_{6(s)} \rightarrow AnCl_{4(s)} + 2NH_{3(g)} + 2HCl_{(g)}$$

 $\overline{3.} \quad \overline{AnCl_{4(s)}} + \overline{Zn_{(s)}} \rightarrow \overline{AnCl_{3(s)}} + \overline{ZnCl_{(s)}}$

Reaction with Actinide Metal

1.
$$An_{(s)} + 6 NH_4Cl_{(s)} \rightarrow (NH_4)_2AnCl_{6(s)} + 4 NH_{3(g)} + 2 H_{2(g)}$$

2.

a)
$$(NH_4)_2AnCl_{6(s)} \rightarrow AnCl_{4(s)} + 2NH_{3(g)} + 2HCl_{(g)}$$

b)
$$(NH_4)_2AnCl_{6(s)} \rightarrow AnCl_{3(s)} + 2NH_{3(g)} + 2HCl_{(g)} + Cl_{2(g)}$$

3.
$$3 AnCl_{4(s)} + An_{(s)} \rightarrow 4 AnCl_{3(s)}$$

Equipment

- Quartz reaction vessel
- Pyrex top sealed with O-ring
- Argon glove box
- Tube furnace with variac controller
- Small scale:
 - Pyrex reaction vessel
 - Pyrex top sealed with O-ring
- Reagents
 - Uranium dendrites
 - Anhydrous ammonium chloride

Standard Thermal Analyzer

 Combines thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC)

• DSC

 Identifies onset temperatures of phase transitions and enthalpy of the transitions

TGA

• Determines mass loss from the sample

Netzsch STA Jupiter 449C

Procedure

Product	Temperature (°C)	Hold Time (h)	Notes
(NH ₄) ₂ UCl ₆	300	30	
UCl ₄	350	10	Vacuum
UCl ₃	450	36	Vacuum

(NH₄)₂UCl₆ Intermediate Product

UCl₄ Product

UCl₃ Product

(NH₄)₂UCl₆ Results

Decomposition of the intermediate occurs at 335 °C

Temperature Intervals (°C)	23-255	255-335	335-590	590-675
Weight Loss Expected (%)	0	11	22	-
Weight Loss Observed (%)	0	10.30	21.19	6.82

Second Heating Cycle of UCl₃

- Onset transition temperature of 855 °C corresponding to UCl₃ melting
- UCl₃ disproportionates upon melting:
 - $4 \text{ UCl}_3 \rightarrow \text{U} + 3 \text{UCl}_4$
- TGA shows major mass loss upon melting corresponding to the UCl₄ sublimation
- DSC signal for cooling (not shown) displays small transition around 833 °C which might correspond to residual UCl₃

DSC and TGA in inert atmosphere DSC (blue) TGA (green)

Third Heating Cycle of UCl₃

- Onset transition temperature of 849 °C corresponding to UCl₃ melting
 - Much smaller transition due to smaller amount of UCl₃ in sample
- TGA signal stabilizes after final melting due to the complete sublimation of UCl₄
- DSC signal for cooling (not shown) does not display any additional transitions because UCl₃ completely disproportionated to UCl₄ and U

DSC and TGA in inert atmosphere DSC: blue, TGA: green.

FUTURE WORK

- Further Analysis of UCl₃ and (NH₄)₂UCl₆
 - Chemical analysis
 - XRD
- Synthesis of NpCl₄ and NpCl₃
- Synthesis of AmCl₃
- Phase investigation of NpCl₄ and NpCl₃ in the LiCl-KCl system

CONCLUSIONS

- Insight into chemistry gained during process feasibility tests
 - Verified the existence of (NH₄)₂UCl₆
 - (NH₄)₂UCl₆ decomposes to UCl₄ at 355 °C
 - Confirmed UCl₃ product
- Synthesis expected to be successful for TRU

ACKNOWLEDGMENTS

- U.S. Department of Energy, Office of Nuclear Energy, Fuel Cycle Research and Development Program.
- Argonne National Laboratory
- Oregon State University

• Government License Notice

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory ("Argonne"). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.